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Abstract

: Confidence intervals for the population median based on
interpolating adjacent order statistics are presented. They are
shown to depend only slightly on the underlying distribution.

A simple, nonlinear interpolation formula is given which works
well for a broad collection of underlying distributions.
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1. Intrcduction

Suppose xl""'xn is a randcm sample of size n from a
distribution with absclutely continuous distribution function F (x-%)
and density f(x-2). Further, suppose F(0) = § , uniguely, so that

5 is the unique median; no shape assumption is imposed on F

Let s ... £X denote the order statistics. Then the

x(1) (n)

interval [h(d)'x(n-d+l)] is a simple distribution-free confidence
interval for < . The confidence coefficient Yy = 1 - 2P (S<d) where

S has a binomial distribution with parameters n and ¢ . If S
denotes the sign test statistic for testing HO:G = 0 versus HA:S #0,

then the interval corresponds to inverting the acceptance region of

a size o = 2P (S<d) test. See Hettmansperger (1984a, Section 1.5).

This confidence interval is gquite versitile since it makes no
shape assumption on the underlying distribution, is easy to compute,
and requires only a binomial table to establish the confidence co-
efficient. In Hettmansperger (1984b) we recommend using the interval

to form the notches in a notched box plot and construct simple two

sample tests based on comparing these intervals. The Minitab

SR
computing system uses these intervals in their box plot routine. T
S

Because cf the discreteness of the binomial distribution, C
for small to moderate sample sizes the available set of possible
confidence coefficients is rather sparse. In this paper we consider
the problem of interpolating adjacent order statistics to form ]
cornfidence intervals with intermediate values of the confidence co- lﬁi’

efiicients. The interpclated intarvals ire no loncer distribution

- -—-1

Iree in generazl; however, we will show that -he :zonfidence cc- e
zfZlzient depends only slightly ¢n +he underl-ing T Izr a broad ST d
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interpolation is not appropriate, and we will provide a simple

interpolation formula that works well in most practical situations.

2. Properties of the Interpolated Intervals.

Suppose lx(d)’x(n—d+l)] and [x(d+1).x(n_d)] are
Yg = 1l - g and Yd+l =1 - ad+1 confidence intervals for ¢& ,

respectively. Then, from the binomial distribution, we have

a a \n
g+l _ d nitl
s A1t

or

n
= —2n L
Yas1 = Ya [d][2}

This links the successive intervals based on d and d+l
Define, for 0 s XA <1,

L (1-A)x(d) + A x(d+l)

>
]

0= @NX X

-
[

and let Yy be the confidence coefficient for [XL,XU] . Then
Yd+1 Sy < Y4 and we wish to establish the connection betweerni A and
Y . Given <y , we will present a simple interpolation formula for

finding  ; see (7) in Section 3. Note that

<
[}

P(XLSGSXU)

1l - P(6<XL) -~ P(9>XU)

=1 -a =-a_ .
L U
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Proposition 1. let & = %/(1-)). Then

d+1l (n} £ ol n-d-1

a = - (n-d)de { (F{-cy) 1 [1-F (y)] dF (y)
. { . (2)
d+1l n d n-d-1

ay == - 'd’{d] [ [1-F(=oy) 1" [F(y)] daF (y)

Proof. Without loss of generality let 6=0. Let D denote the
set {(x,y): - @< x <y <, (1-\)x + Ay > 0} . Then, denoting

the joint density of x(d) and x(d+l) by f(x,y). we have

= D <
a p(0 XL)

IDI £ (x,y)dxdy

© ! a- -a-
- [ e Fer T arwn” Lt (x) £ (y) axdy
! © d -~

The formula for a_, now follows from the fact that
A

n %m[F(y)Jd(l-F(y)]n_d-ldF(y)

P x = a1l (n-a-1) !

@1y’ %

3d+1
=
2

The formula for aU follows in a similar way.

Proposition 2. Suppose f 1is symmetric about O . Then

|
() 3 =3, (3) \:?}4
-
(i11) 1f = & 1t follows that
U
=t _ n-dfn){}?n :
T2 nodli2l RO
PN - . Y
-, (4) SO
*3 . e -
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Proof. Part (i) follows at once from Proposition 1 since
F(sy) = 1 - F(-oy) . 1In part (ii), note that A=} implies

=1, so that we have

17 190-F 917 % lap y) = Cu-r 1™ Lar (y)

The formulas in (ii) now follow from the result for aL in

Proposition 1 and the result in (1).

Given a desired y , define the interpolation factor I
by
Yqg © Y

I = - (5)
Ya = Yas1

Note that I depends upon A through Yy so we will write I(A)

when it is necessary to express this dependence.

Proposition 3. Let ¢ = A/(1-1) . Suppose f is symmetric

about O . Then

@ 10 =1- @2 T o 1211-F 1P ar ) (6)

I1(0) =0, I(4) =d/n and I(A) »1 as X -+ 1.

(ii) If F 1is sufficiently regular so that differentiation can
1
be caried out under the integral and if f’(x) >0 for x S 0, i

then I(A) is a continuwous and strictly increasing convex

function of A . R

e e e e e
S

L S N 2
PAPAT I I AT




Proof. Using y = 1l-2a , from (5) and (1), we have
n
= - ni|l
I = [ad+l/2 ad/Z]/(d][z] . The formula for I now follows from
Propositions 1 and 2 by substitution. The limit follows by the

dominated convergence theorem since F(-oy) + 0 as o+ « for y > O.

Part (ii) follows by verifying that I'(A) >0 and I'’(X) >0 .

This proposition shows at once that linear interpolation
is inappropriate. If we used linear interpolation then 1I(}) must
be equal to & . However, 1I(4) =d/n which is less than % .

For example with n=10, d=2, v, = .9786, Yd+1 = ,8907 , we have

d

I =d/n=.2 and Yy = .9610, corresponding to XA = % . Linear
interpolation yields .9347. As a crude approximation take
d = n/2 - Zn-i/z + .5, where 2 is the ad/z guantile from the

standard normal distribution, then

d.1_2z .1 1
n 2 4 2n 2
2n
Further, since I(4) =d/n , we have an additional

distribution-free interval when f is symmetric. This helps in the
search for an interpolation formula since the curve for 1I(A) must

pass through the ordinates 0 , d/n, and 1 , at least for a

symmetric £ . In principle, given ) # { we would need to specify
F to find I according to (6). 1In practice, we wish to specify I , K
through y , and find ) . From Part (ii) there exists a strictly

.y
-

increasing concave curve that relates A to I but is generally

impossible to find because of the complexity of (6).

. I’

. ' L .
. e
A A a4 g a0 0

In the next section we find 1I(A) for several different

distributions. We show that the curves are quite close to one another.
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We then select cone which yields a particularly simple formula for I(}),
(it results when F is the double exponential distribution), and

invert it to provide a formula for } in terms of I

3. Examples and a Recommendation

In this section we provide explicit formulas for I (A)
for underlying uniform and double exponential distributions and an
asymmetric distribution formed by piecing together double exponential
and logistic distributions. We also provide numerical results,
based on numerical integration, for the ncrmal and Cauchy distributions.
The numerical integrations were carried out using the method of

Donker and Piessens (1975).
Numerical examples are given in Tables 1 and 2.

Example 1. The double exponential distribution. The distribution
function is given by F(x) = 2-lexp(x) if x<0, and 1 - 2—lexp(-x)
if x2 0 . 1In (6) replace F(-cy) by 1 - F(cy) and then

n

- - P -
Fu-rey®u-ren™lar ) = |3 [Ceml-y o) Jay
\

——t

n
= [n+d (0-1) ]'1%]

Hence, from (6), I(}) = dc/[n+d(0-1)] . Recalling that d = X\/(1l-})
we find

\ = (n~d)I
d + (n=-24)1
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. e e,
P G R S L




RPN Wl Py

a e
PPN

Peiade St S e anse

it SR ey

As a final remark, note that if we take a curve fitting approach

and try to find a concave curve through

then (7) results when we fit A =
not very satisfactory and

polynomials.

Example 2.

function is given by F(x) =0

and 1 if x > 1

-1 -1

2-1(—oy+l) if -o Syso ’

al/(b+cI).

The uniform distribution on (-1,1).
if x < -1,

Note also that F(-oy) =0

(0,0), (d/nri) and (1,1),

Polynomial fits were

(7) represents a simple ratio of linear

The distribution

2 1) i x| 51,
if y > c-l .

and 1 if vy < -o-l Now,

using a binomial expansion on (l—oy)d and the beta integral, we have,

when o 121 (Asd) ,

ﬁf[?(-cy)ldtl-p(y)ln'd'l

" i e

when o 11 (23) we have

n-d-1

[ 1F (=oy) 13 {1-F (1) ] aF (y) =
0

The formulas (8) and (9) can then

various values of A

f T TR T LT e T N e et IR L
W, P N A Y
-

.~ .
DR e YAt s e o ataM .
(PR AR IR IR N

dr (y) =

n 1 -
(EJ [ (109 (1-y) "I Lay
0

[ S}

d .
d! (n-d-1)! z (_G)J n' (8)
3=0 d-3

n -1
eg © 7 a-opd 1-y) 9 tay
0

n 1 - -
o 1(%} [ (1-6)% -0ty 9 e
0

110" dt (nma-1) P78 130 g
oMY gty TR

! . -d-j-1
2 3=0 n 3
(9}

be used to calculate I(X) for

I
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Example 3. Pieced together double exponential and logistic
distributions. The distribution function is given by

F(x) = 2'1exp(x/r) if x <0, and [1 + exp(--x)]-l if x 20
If 1 =2, the density function is continwus, the first quartile
is -1.39, and the third quartile is 1.1. If 1 = 10, there is a
jump in the density at O , the first quartile is -6.9, and the
third quartile is 1.1. Because of the asymmetry we must evaluate

QL and uU separately. See formulas (2).

We have

f:"m-oy)]d[l - F 17 ar )

- ) - -

= [%} foexp[-y[g% + n—dJ]{l + exp (-y) } n+d 1dy (10)

and
’ d n-d-1
J 1 - F=oy) 1 (F(y)] dF (y)
-d
PR L BT [ n_-g] y-d
= {2) = foexp[—ykd + GT11{1 + exp(-y)} dy . (11)

By making the change of variable u = exp(-y) both integrals can

be reduced to the form

1o _ N o= N ] _
J W 1w Mau = H } [M’: 1} (—%} N3y (12)
320

See Gradshten and Ryzhik (1965 p.285). Using (12), (10) can be
written as

od
ny "4 2 j -
3 L (3127
N ]=0

y

3"
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and (ll) can be written as

n-d
o 2 ;-1 - -1
{-:—L] 9T T (3127 1 t-—n +1]... -——n_d + 3 {d - N j7
12 L o1 ST k ot |
Nt} J__.0 J

These infinite series are straightforward to approximate. For
large j the (j+l)st term is roughly one-half of the jth term.
This means that the tail of the series is roughly equal to the

last term retained. The examples are calculated accurately to four

places.

For the normal, logistic and Cauchy distributions we
used numerical integration as mentioned previously. As an illustration
we take n=10, d=2, Yd=.9786, 7d+l=.8907. In Table 1 we show
I(A) for XA = .1 (.1) .9 and y = Yd - (Yd—yd+l)1 in parentheses.

Linear interpolation results are provided for comparison.

- Table 1 about here -

Note in Table 1 how close vy 1is for all X anl for the
spread of distributions uniform to Cauchy. The logistic distribution
was indistinguishable from the normal distribution so it was not

included in the table.

If the underlying distribution can be supposed to be symmetric
then we recommend using formula (7) to determine A from I
For the example considered here, if we want a 95% confidence interval
then from (5) I = .3254 and from (7) A = .66 . Hence
X, = .34X, + .66X and XU = . 34X + .66X provide the

L {2) (3) (9) (8)

95% confidence interval.
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In Table 2 we illustrate the n=10, d=2 case for the
asymmetric distribution in Example 3. The table shows the lower

and upper tails, a and

L au , and then compares Y =1 - a - a

L ]
to the vy calculated from the double exponential example.

- Table 2 about here -

P

k; Table 2 shows that mild asymmetry does not matter much
and we would still use (7). 1In the pathologiéal case, Tt=10,

b the results were surprisingly close even though the two tails

differed by quite a bit. Further, for this extreme case, linear

interpolation is at least twice as far from y as (7).

Hence, we conclude that for most practical situations

(7) provides an accurate interpolation formula.
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Table 1.

Interpolation Factors and

Confidence Coefficients.

*

] DE U N c LINEAR
F .
X .027(.976) .023(.977) .025(.976) .026(.976) .1(.970)
; .059(.973) .052(.974) .055(.974) .057(.974) .2(.961)
.096(.970) .091(.971) .092 (.971) .094(.970) -3(.952)
{
t .143(.966) .137(.967) .139(.966) .141(.966) -4(.943
.200(.9861) -200(.961) .200(.961) .200(.961) .5(.935)
.273(.955) .282(.954) .280 (.954) -275(.954) .0(.926)
.369(.946) .396(.944) .388(.944) .373(.946) -7(.917)
.501(.935) .553(.930) .536(.931) .506(.934) -8(.908)
-9 .692(.918) '.753(.912) .736(.914) .694 (.918) -9(.899)

* DE = Double exponential, U = Uniform, N = Normal, C = Cauchy.

** The number in parentheses is the confidence coefficient.
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Table 2. Confidence Coefficients in Asymmetric Case

.1 .0l19 .0117 .976 -.976
i .2 .0133 .0130 .974 .973
-3 .0151 .0l46 .970 .970
-4 .0173 .0165 . 966 .966

.5 .0201 .0l89 .961 .961

=

.6 .0237 .0220 .954 .955
.7 -0284 .0262 . 945 . 946
.8 .0346 .0320 .933 .935

-9 .0430 .0407 .916 .918

]

-1 .0le3 .0109 .973 .976

i .2 .0220 .0112 .967 .973

.3 .0275 .0115 .961 .970

-4 .0325 .0120 .956 . 966

.5 .0372 .0126 . 950 .961

ARY

.6 .0414 .0135 .945 .955

.7 .0452 .0149 . 940 .946

.8 .0487 .0175 .934 .935

» 'Am -+ ¢« v %
.- :

.9 .0518 .0236 .925 .918
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